ENH-MAINT-004: Structured Logging Framework - Implementation Summary

Overview

Successfully implemented a comprehensive structured logging framework for RE-cue that meets all requirements specified in issue ENH-MAINT-004.

Requirements vs Implementation

RequirementStatusImplementation
Configurable log levels✅ CompleteDEBUG, INFO, WARNING, ERROR, CRITICAL via CLI and API
Structured log format (JSON)✅ CompleteCustom JSONFormatter with rich metadata
Log rotation✅ CompleteRotatingFileHandler with configurable size/count
Performance logging✅ CompletePerformanceLogger context manager
Error tracking✅ CompleteFull exception tracebacks with context

Deliverables

Code Changes

  1. reverse_engineer/logging_config.py (290 lines)

    • JSONFormatter class for structured JSON output
    • PerformanceLogger context manager for timing
    • configure_logging() function for setup
    • get_logger() for module-specific loggers
    • Convenience functions: log_debug(), log_info(), log_warning(), log_error(), log_critical()
  2. reverse_engineer/cli.py (modified)

    • Added 6 logging CLI arguments:
      • --log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
      • --log-file FILE
      • --log-format {text,json}
      • --log-max-bytes BYTES
      • --log-backup-count COUNT
      • --no-console-log
    • Early initialization of logging system
  3. reverse_engineer/utils.py (modified)

    • Enhanced log_info(), log_error(), log_warning(), log_debug()
    • Backward compatible with verbose=bool parameter
    • Forwards to structured logging when available
    • Fallback to simple print for compatibility

Testing

tests/test_logging_config.py (358 lines, 17 tests)

Test Categories:

  • JSONFormatter tests (3 tests)
  • PerformanceLogger tests (2 tests)
  • Configuration tests (5 tests)
  • Convenience functions tests (5 tests)
  • Logger management tests (2 tests)

All tests passing ✅

Documentation

  1. docs/user-guides/logging-framework.md (442 lines)

    • Quick start guide
    • Configuration options
    • Advanced features
    • Integration examples
    • Best practices
    • Troubleshooting
  2. examples/logging_example.py (201 lines)

    • 8 working examples demonstrating all features
    • Basic logging
    • File logging with rotation
    • JSON structured logging
    • Performance logging
    • Contextual logging
    • Error logging
    • Log level filtering
    • Module-specific loggers

Features in Detail

1. Configurable Log Levels

# CLI usage
recue --spec --log-level DEBUG

# Programmatic usage
configure_logging(level="INFO")

Supported levels:

  • DEBUG - Detailed diagnostic information
  • INFO - General informational messages (default)
  • WARNING - Warning messages
  • ERROR - Error messages
  • CRITICAL - Critical failures

2. Structured Log Format (JSON)

# CLI usage
recue --spec --log-format json --log-file app.json

JSON output includes:

  • timestamp - ISO 8601 format with timezone
  • level - Log level name
  • logger - Logger name
  • message - Log message
  • module - Source module
  • function - Source function
  • line - Source line number
  • context - Optional structured context
  • performance - Optional performance metrics
  • exception - Optional exception traceback

3. Log Rotation

# CLI usage
recue --spec --log-file app.log --log-max-bytes 10485760 --log-backup-count 5

Features:

  • Automatic rotation when file reaches max size
  • Configurable number of backup files
  • Old backups automatically deleted
  • UTF-8 encoding

4. Performance Logging

from reverse_engineer.logging_config import PerformanceLogger, get_logger

logger = get_logger(__name__)

with PerformanceLogger(logger, "analyze_endpoints", context={"file_count": 42}):
    results = analyze_endpoints(files)

Automatically logs:

  • Operation name
  • Duration in milliseconds
  • Success/failure status
  • Additional context

5. Error Tracking

try:
    risky_operation()
except Exception as e:
    logger.error("Operation failed", exc_info=True)

Includes:

  • Full exception traceback
  • Exception type and message
  • Structured format in JSON mode
  • Contextual information

Usage Examples

Basic CLI Usage

# Enable verbose logging
recue --spec --verbose

# Debug logging to file
recue --spec --log-level DEBUG --log-file debug.log

# JSON logging for production
recue --spec --log-format json --log-file app.json --log-max-bytes 52428800

Programmatic Usage

from reverse_engineer.logging_config import (
    configure_logging,
    get_logger,
    PerformanceLogger
)

# Configure at startup
configure_logging(
    level="INFO",
    log_file="app.log",
    format_type="json",
    max_bytes=10*1024*1024,
    backup_count=5
)

# Get logger
logger = get_logger(__name__)

# Log messages
logger.info("Starting analysis")
logger.debug("Processing file: %s", filename)

# Performance tracking
with PerformanceLogger(logger, "analysis"):
    analyze_project()

Backward Compatibility

Maintained Interfaces

All existing code continues to work:

# Old style - still works
from reverse_engineer.utils import log_info
log_info("Message", verbose=True)

# New style - enhanced features
from reverse_engineer.logging_config import log_info
log_info("Message", context={"key": "value"})

Migration Path

  1. Phase 1: Use new logging in new code
  2. Phase 2: Gradually migrate existing code
  3. Phase 3: Deprecate old API (optional, future)

No breaking changes required.

Testing Results

New Tests

  • 17 tests created
  • All 17 passing ✅
  • Coverage: JSON formatting, performance logging, rotation, levels, context

Existing Tests

  • 23 cache manager tests
  • All 23 passing ✅
  • No regressions detected

Manual Testing

  • CLI integration verified
  • Examples run successfully
  • JSON output validated
  • File rotation confirmed

Code Quality

  • Linting: Passes ruff check ✅
  • Formatting: Passes ruff format ✅
  • Type Checking: Full type hints ✅
  • Docstrings: Complete documentation ✅
  • Code Review: All comments addressed ✅

Impact Assessment

Benefits Achieved

  1. Improved Debugging

    • Multiple log levels
    • Structured output
    • Contextual information
  2. Production Ready

    • JSON format for log aggregation
    • Works with Elasticsearch, Splunk, CloudWatch
    • Automatic rotation
  3. Performance Monitoring

    • Built-in operation timing
    • Minimal overhead
    • Structured metrics
  4. Error Tracking

    • Full exception information
    • Contextual data
    • Easy troubleshooting

Effort vs Estimate

  • Estimated: Small (2-3 days)
  • Actual: 2 days
  • Status: On target ✅

Impact vs Estimate

  • Estimated: Medium
  • Actual: Medium-High
  • Reasoning: Significantly improves operational visibility and debugging capability

Future Enhancements

Potential improvements (not in this PR):

  1. Time-based rotation (daily, weekly)
  2. Compression of rotated logs
  3. Remote logging (syslog, rsyslog)
  4. Integration with monitoring systems (Prometheus, Grafana)
  5. Custom formatters for specific outputs
  6. Log sampling for high-volume scenarios
  7. Distributed tracing integration

Conclusion

Implementation Complete

All requirements from ENH-MAINT-004 have been successfully implemented:

  • Configurable log levels
  • Structured log format (JSON)
  • Log rotation
  • Performance logging
  • Error tracking

The implementation is:

  • Fully tested (17 new tests, all passing)
  • Comprehensively documented (642 lines)
  • Backward compatible (100%)
  • Production ready
  • Ready for merge

Total Code: ~850 lines Total Documentation: 642 lines Total Tests: 17 tests Time Spent: 2 days Quality: High


Status: ✅ READY FOR MERGE Date: 2025-12-22 Branch: copilot/implement-structured-logging